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Abstract. We propose a scheme for the construction of a CNOT gate by adiabatic passage in an optical
cavity. In opposition to a previously proposed method, the technique is not based on fractional adiabatic
passage, which requires the control of the ratio of two pulse amplitudes. Moreover, the technique constitutes
a decoherence-free method in the sense that spontaneous emission and cavity damping are avoided since

the dynamics follows dark states.

PACS. 03.67.Lx Quantum computation — 32.80.Qk Coherent control of atomic interactions with photons

1 Introduction

The controlled-not (CNOT) gate acts on systems com-
posed of two qubits. The first qubit controls the not oper-
ation on the second (target) qubit: if the control qubit is
in state |0), the target keeps its state whereas if the con-
trol is in state |1), the state of the target is switched. The
set composed of the CNOT gate and of elementary one-
qubit gates forms a universal set, i.e. all logical gates can
be constructed by the composition of gates in this set [1].
The CNOT gate allows to prepare entangled states from
factorizable superposition states. Entanglement is a key
ingredient of quantum computation [2], quantum telepor-
tation [3] or secure quantum cryptography [4] and thus
confers to the CNOT gate a broad practical interest.
The efficient treatment of quantum information re-
quires qubits insensitive to decoherence, easily prepared
and measured. Furthermore, the gates operating on the
qubits have to be robust with respect to variations or par-
tial knowledge of experimental parameters. These require-
ments can be satisfied if the quantum information is rep-
resented by atomic states controlled by adiabatic fields.
Indeed, the decoherence due to spontaneous emission can
be avoided if the dynamics follows dark states, i.e. states
without components on lossy excited states. In this con-
text, a mechanism has been proposed in reference [5] to
implement by adiabatic passage all one-qubit gates, i.e.
a general unitary matrix U in SU(2). A tripod-type sys-
tem [6] is used and as in fractional stimulated Raman
adiabatic passage (f-STIRAP) [7], the amplitudes of two
pulses are required to have a constant ratio. The real-
isation of this technique requires a specific system (for
instance a system of Zeeman states) to be robust [7]. In
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a scheme, first introduced in reference [8], composed of
atoms fixed inside a single-mode optical cavity, a mecha-
nism has been proposed [9] for the creation of a two-qubit
controlled-phase (C-phase) gate by stimulated Raman
adiabatic passage (STIRAP) processes [10,11] and a two-
qubit controlled-unitary (C-U) gate requiring -STTRAP
processes. Additionally, it was suggested in reference [9]
to work with five-level systems composed of three ground
states (two of them are the qubit states, the other one an
ancillary state) and of two excited states never populated
in the adiabatic limit. The proposal was to use the two
excited states to realise the Raman transitions involved
respectively in the construction of one-qubit gates and the
C-phase gate. This gives a technique for the preparation of
the universal set {U, C-phase} [12] and all logical quantum
gates can thus be obtained from the composition of these
two gates. The construction of a CNOT gate from the uni-
versal set {U, C-phase} or from the C-U gate requires the
control of the ratio between two pulse amplitudes since
f-STIRAP is used in both methods. A five-level system in
which the transitions can be excited independently and
the ratio of the pulsed fields can be controlled robustly
has to be found.

In this paper, we adapt to the preparation of the
CNOT gate an alternative mechanism based on adiabatic
passage along dark states that was used to construct di-
rectly the SWAP gate [13]. The mechanism is only based
on STIRAP processes. It can therefore be implemented
robustly in a variety of systems, avoiding e.g. the require-
ment encountered in other schemes of using very specific
Zeeman-sublevels. Moreover, it constitutes a decoherence-
free method in the sense that in the adiabatic limit, the
excited atomic states and the cavity mode (in the limit of
a cavity Rabi frequency much larger than the laser Rabi
frequency) are negligibly populated during the dynamics.
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Fig. 1. (a) Schematic representation of the five-level atom.
The laser (cavity) couplings are represented by dashed (full)
arrows. (b) Representation of the atomic register trapped in
a single-mode optical cavity. The atoms are represented by
circles, laser fields by arrows.

Furthermore, we also show that the proposed mechanism
can be used to directly prepare some specific composed
gates. The usual technique to construct a specific gate
consists generally in combining elementary gates belong-
ing to a universal set. Since in the experimental realisa-
tion of each gate there always are uncontrollable losses,
it is usefull to design instead direct implementations of
specific compositions of elementary gates.

We present the atomic configuration associated to the
qubits in Section 2. In Section 3, we develop the mecha-
nism and the analytical calculations of the instantaneous
eigenstates adiabatically involved in the dynamics. In Sec-
tion 4, we show the result of numerical simulations. Before
concluding, we extend the mechanism allowing to build
the CNOT gate to the direct generation of specific com-
posed gates.

2 The system

Although the mechanism could be realised in a system
composed of non-degenerate ground states, we use the
five-level atomic system as presented in Figure la, in
which other gates have also been implemented [9]. The
three ground states |0), |a) and |1) are coupled to the ex-
cited state |e) respectively by two lasers (associated to the
Rabi frequencies Qy and ), and by a single mode cav-
ity (associated to the Rabi frequency g). Furthermore, |a)
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and |1) are coupled by two additional lasers (with Rabi
frequencies 2, (si) and Qy(si)) to the upper state |u). The
polarizations and the frequencies are such that each field
drives a unique transition. The atomic states |0) and |1)
represent the computational states of the qubit. We con-
sider that the atomic register is fixed in the single-mode
optical cavity as represented in Figure 1b. Each atom (la-
beled by k) of the register is driven by a set of four pulsed

laser fields Q7 (¢), Q% (), Q) and Q) and by the

a(sti) (sti)
cavity mode ¢(*) which is time independent.

3 The mechanism
3.1 General strategy

We first recall how the CNOT gate acts. Before the inter-
action with the lasers, the initial state |¢;) of the atoms
in the cavity is defined as

|¢i) = ]00)[0) + 8]01)[0) +~[10)[0) + 6[11)[0), (1)

where the labels s1, s2 of the states of the form |s1s2)|0)
denote respectively the states of the first and second atom,
and |0) is the initial vacuum state of the cavity-mode
field. o, 3,7, are complex coefficients. The CNOT gate
exchanges the states |0) and |1) of the second target qubit
when the first control qubit is in state |1) leading to the
output state

|1h0) = @/00)[0) + £]01)[0) + 7[11)|0) + 6]10)[0).  (2)

We use a simple interaction scheme to represent the pro-
posed mechanism for the creation of a CNOT gate (see
Fig. 2). This mechanism is composed of six steps. Since the
state |11)|0) is a stationary state (if there are no photons
in the cavity there cannot be any transition from |1) to
le)), we first transfer the population of the state |1) of the
second atom into the ancillary state |a) by STIRAP. The
next four steps allow to swap the populations of the states
[10}|0) and |1a)|0). The last step transfers back the pop-
ulation of the ancillary state |a) of the second atom into
the state |1). The population transfers are realised by adi-
abatic passage along dark states (i.e. with no components
in the atomic excited states and a negligible component in
the excited cavity states). We thus obtain a decoherence-
free method for the creation of the CNOT gate. In the
next subsection, we give details of each step.

3.2 Description of the steps

The six steps summarized above are obtained as follows.

Step 1. The population of state |1) of the second atom
is completely transferred into |a) by the use of two reso-
2 2 . .
((1()sti)’ Q(l(iti), with relative phase ¢ = m,
switched on and off in a counterintuitive pulse sequence

(i.e. 0 before Q1) ).) After this STIRAP interac-

a(sti) 1(sti
tion [10,11], the initial state (1) becomes

[¥1) = @]00)[0) + 5]0a)[0) + 7[10)(0) + 6[1a)|0).

nant pulses ()

3)
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Fig. 2. Schematic representation of the six steps of the cons-
truction of the CNOT gate. For each step, the initial state
is represented by an empty circle whereas the final state is
symbolized by a full black circle.
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Step 2. The population of state [10)|0) is transferred into

|a1)|0) with the use of the sequence i, (282). This adi-
abatic transfer is a non-trivial coherent process described
in [8]. It uses a five-level extended STIRAP with constant
intermediate couplings. The state (3) reads

|1h2) = @/00)[0) + 5]0a)|0) + v|a1)[0) + 6[1a)|0).  (4)

Step 3. With a similar technique, the population of
[1a)|0) is transferred into |01)|0) by the use of the coun-

terintuitive sequence of the two pulses le), Q((f)

to the state

leading

[¥3) = [00)[0) + 8]0a)[0) + ~]a1)[0) 4 6]01)[0).  (5)

Step 4. With a similar technique, the population of
|a1)|0) is transferred into |1a)|0) by the use of the sequence

Q((f), Qfll) giving
[¥4) = @]00}|0) + 8]0a}|0) + 7[1a)[0) 4 6[01)|0).  (6)
Step 5. With a similar technique, the population of

|01)]0) is transferred into |10)|0) by the use of the sequence
(282), Qél) in such a way that the state (6) becomes

[¥5) = [00)[0) + 810a)[0) +~v[1a)[0) + 6[10)[0).  (7)

Step 6. The population of the state |a) of the second
atom is transferred back by STIRAP into |1) by the use
2) @
1(sti)? " “a(sti)
@ = m. As a result, the system is in state

of the sequence of pulses () with relative phase

[6) = @|00)[0) + 8]01)[0) + 7[11)|0) + 6]10)[0),  (8)

which coincides with the output state of the CNOT gate.

3.3 Calculation of the instantaneous eigenstates

We calculate the instantaneous eigenvectors connected
with the initial condition and that are thus adiabatically
followed by the dynamics when the two atoms interact
with two laser fields and the cavity-mode. We show that
they are dark states with no component in the atomic
excited states and a negligible component in the excited
cavity states.

We give the details of steps (1)-(6) first and next
(2)-(3)-(4)-(5).

The steps (1) and (6) are the well known STIRAP
process [10,11]. The dynamics follows the dark state

2 i 2
[ty o Ay |1) = PR la) (9)
(where ¢ is the relative phase of the pulses Qﬁiﬂ) and

Q;Q(iti)) that transfers population from [1) (|a)) to |a)
(]1)) with a counterintuitive pulse sequence. We choose
the phase ¢ = 7 to avoid a minus sign on the states |a)
and |1) of the second atom after the steps (1) and (6)
respectively.
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Concerning the intermediate steps, since the lasers do

not couple the atomic state |1), the state |¢§1)> = [11)]0)
(defining one dimensional Hilbert space H1) of the initial
condition (1) is decoupled from the other ones. The other
states of (1) are connected to two orthogonal decoupled
subspaces denoted H7 and Hie, respectively spanned by
the states

Hz = {]01)[0),[10)[0), [1a)|0), [a0} 0),

1€)[0), [€1)]0), [11)[1)},  (10)
and
Hie = {|00)]0), [0a)|0),[01)1), |0e)|0), |a0)|0),
|laa)[0), [a1)[1), lae)|0), [Le)[1), €0)|0), [10)[1),
[La)[1),[11)[2),[ea)|0),]e1)[1),]ee)[0)}. (11)

For each step, one ground state |0) or |a) of each atom
is coupled by a laser field to the excited state, while the
other one is not coupled to the excited state. To describe
the calculation of the instantaneous eigenstates for the
four steps, we introduce the following notation: the state
coupled by a laser field is labeled |[L()) (|0®)) or |a())
and the non-coupled state [N () (|a?) or [0))). The in-
dex 7 = 1,2 labels the atom i. In the full Hilbert space
H=HD o H®? o F with H? the Hilbert space associ-
ated to the atom ¢ and F the Fock space, the Hamiltonian
(in units such that A = 1) reads in the rotating wave ap-
proximation

H(t)=wea'a+wele®)(e®|+w|e®)(e?]
+ (Q<1>(t)e—wt|e<1>><L<1>|+g<1>a|e<1>><1<1>|+h.c.)

+ (Q(2>(t)e’i“’t|e(2)><L(2) |+ g<2>a|e<2>><1<2>|+h.c.)
(12)

where a (a') is the annihilation (creation) operator for
the cavity mode, w (w.) is the frequency of the laser
field (cavity mode) and w, is the energy of the excited
state (the energy reference is taken for the ground states:
wo = we = w1 = 0). We consider resonant fields: w, = w =
we. QW (t) and g are the Rabi frequencies associated to
the laser pulse and to the cavity respectively for the atom
i. (W (t) corresponds to Q(()Z) (t) or ol (t), depending on
the ground state |0) or |a) of the atom 4 coupled by the
laser.) The dynamics is determined by the Schrédinger
equation 0 (t)/0t = H(t)y(t). The Hamiltonian in the
interaction picture

dr

Hi(t) =TT (t)H(t)T(t) — iTT(t)%(t) (13a)
with
T(t) = e—iwt(aat]e™) (e +[e®)(?)]) (13b)
reads
Hi(t) = QW (0)]eW)(LW] + gWale®) (1]
+ Q(2)(t)|e(2)><L(2)| + 9(2)a|e(2)><1(2)|
+h.c. (14)
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The dynamics is therefore determined by

i 0(1) = Hi(1)o(1) (15)
with
v(6) = T9(1). (16)

We remark that the transformation 7' does not change the
initial state (1). The Hamiltonian Hi(t) is block-diagonal;
three blocks connected to the initial state (1) have to be
considered:

H =0 0 0

Hi(t) = 0 Hz(t) 0
0 0 Hug®)

(17)

with Hy(t) acting in the d-dimensional subspace H, gener-
ated by the set of states defined in equations (10) and (11).
The adiabatic evolution of the initial state (1) is com-
pletely described by the dark states of the Hamiltonian
Hi, labeled ¢g€) (t) € Hq (with k the index of degener-
acy of Hg). These dark states are instantaneous eigen-
states that don’t have any components on the atomic
excited states. They are associated to null eigenvalues.
Although these dark states are degenerate, they evolve
without any geometric phase. One can easily check that
all the elements contributing to this geometric phase [14],
( ((ik )(s)|d/ds|q§((ik) (s)), are null during the dynamics since
for k = k', the phase of the lasers is constant for each
step (as in standard STIRAP) and for k # K/, the dark
states belong to orthogonal subspaces. Therefore, accord-
ing to the adiabatic theorem, the dynamics follows the
dark states initially connected to each component of the
initial state (1)

() = T(1) Y chlol? (t), (18)
d,k
with the coefficients
ch = (& @IT" ()l (t:))
= (e le(t) ) (19)

We have thus to determine the instantaneous eigenstates.
In the subspace Hr7, the states |¢)(71)> = |[NM1)|0) and
|¢)§2)> = |IN®))|0) are not coupled to the initial state (1)

and do not participate in the dynamics. Only the atomic
dark state [8]:

169 oc gDQP | LOD)|0) + gD [1L3)Y|0)
—Wa® 1)1y (20)

(where the normalisation coefficient has been omitted)
participates to the dynamics. The second step, associated
to LV = q, L® = 0, Q) = oV, 0@ = (282) leads
to the initial and final connections symbolically written
as [10)[0) — [¢%)) — |a1)|0) (see Fig. 3). The third,
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Fig. 3. Temporal evolution of initial conditions (a) |00)|0},
(b) |01)]|0), (c) |10)|0) and (d) |11)|0). The states which
are populated during the interaction with the pulses or be-
tween two steps are indicated. (e) Temporal profile of the
Rabi frequencies. The parameters used are QmaxTp, = 10,
gTp = 25. The delay between two pulses in a step is 1.27}.
A colour version of the figure is available in electronic form at
http://www.eurphysj.org.

fourth and fifth steps give respectively the connections
3 3

1a)[0) — [657) — [01)[0), |a1)]0) — [¢{”) — [1a)[0),

and [01)|0) — |<;§$3)> — ]10)|0). We determine four atomic

dark states in the subspace H1g connected to the compo-

nent |00)|0) of the initial condition (1):

658 o Q@ INW1)[1) — g@ND L) o) (21a)
658) o QU IN@)1) — gWLONP) o), (21b)
658) = INON®)|0), (21c)
[615) o g Vg VRLO L) 0) — g AOVRILE) 1)

—gWa@v2ILW1) 1) + QWa@|11)[2). (21d)

We remark that the state |00)|0) is connected initially and

finally to the dark state |¢§7é)> at the nth step. Since the
dynamics follows atomic dark states, the excited atomic
state is never populated (in the adiabatic limit). Moreover,
the projections of the dark states on the excited cavity
photon states can be made negligible if g > Q® [15].
In this case, the mechanism we propose is a decoherence-
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free method in the sense that the process is not sensitive
to spontaneous emission from the atomic excited states
nor to the lifetime of photons in the optical cavity.

4 Numerical validation

We present the numerical validation of the mechanism
proposed for the construction of the CNOT gate.

We show in Figure 3 the time evolution of four initial
states: in (a) and (b) the population of initial states |00)|0)
and |01)|0) respectively stays in these states after the in-
teraction with the twelve pulses since the control qubit is
in state |0}, in (c) and (d) the population of initial states
|01)]|0) and |11)|0) are exchanged. In (e), we show the Rabi
frequencies associated to the pulses. The laser Rabi fre-
quencies are all chosen of the form Q(t) = Qmaxe’(t/TPf.
The steps (1) and (6) of the mechanism can be explained
by the standard STIRAP technique [10,11]. The other
steps involve the two atoms and the cavity using an adia-
batic transfer which is a five-level extended STIRAP with
constant intermediate couplings [8]. The couplings have to
satisfy QmaxTp, 97, > 1 to fulfill the adiabatic conditions.
The delay between two pulses of the same step is chosen
equal to 1.27, to minimize the non-adiabatic losses [7].
Moreover, the condition g > Qnax has to be satisfied
such that the cavity mode is negligibly populated during
the interaction with the pulses.

5 Discussion

In the optical domain, one can give an estimate of the
relevant parameters. Taking into account the losses of
the cavity (characterized by the decay rate x of the cav-
ity field) and of the excited states (of lifetime 7), we
have to satisfy the adiabatic conditions: QmaxTp, g7 > 1
and (QmaxIp)?, (gTp)? > KT, T,/7. The latter is satis-
fied for g, Qmax > k,1/7. For a typical pulse duration of
T, = 50 ns, we use Qpax = 1.2 108 s71, which is achiev-
able experimentally (see for instance Ref. [16]). We use a
cavity coupling ¢ = 5.2 x 10% s~!, more than four times
larger than Qp,.x to have a small population in the cavity
field. Such a strong coupling has been recently achieved
in experiments with atoms in an optical cavity trapped
with a duration of the order of one second [17,18]. For a
realistic decay rate (k = 1 x 107 s71) of the cavity, the nu-
merical simulation of the proposed process gives: (i) 80%
of the population of states |00)|0) and |01)|0) are left on
these states and (ii) the exchange of the population be-
tween |10)|0) and |11)|0) is of the order of 90%. For a
decay rate (k = 1 x 105 s71), we would obtain that 96%
of the population of the states |00)|0) and |01)|0) are pre-
served, and 92% of the population of |10)|0) and |11)|0)
are exchanged. This analysis shows that the mechanism
could be implemented with an observable efficiency with
the currently available technology. Longer cavity photon
lifetimes and/or larger cavity couplings would give a very
good efficiency.
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We remark that the pulse Q,(IQ) is used two times suc-
cessively in the steps (3) and (4). These two pulses can
thus be replaced by a single pulse. The process then re-
quires the use of only eleven pulses.

By manipulating the phase of the pulses, the technique
proposed in this paper can be extend to the direct prepa-
ration of the composition of elementary gates. Indeed, if
instead of taking a phase difference equal to m between
the first and the second laser for the steps (1) and (6) and
zero otherwise, we add an arbitrary relative phase ¢(;) in
step (n), the proposed mechanism leads to the following
gate composition:

Ph(Q)(gD((;)) o C—phase(go(g) + @(4)) o CNQOTo
C-phase(p@) + ¢(5)) © PR (o). (22)

Similarly, the technique we proposed to build the SWAP
gate in reference [13] leads to the composition

Ph(a) o SWAP o PhY () o C-phase(—a— 3)  (23)
where «a, 3 are functions of the static relative phases of
the laser pulses.

6 Conclusion

In this paper, we have proposed a mechanism for the con-
struction of a CNOT gate. This technique requires the
use of one cavity and eleven pulses. It is robust against
variations of amplitude and duration of the pulses and
of the delay between the pulses. Moreover, it constitutes
a decohence-free method in the sense that the excited
atomic states with short life times are not populated in
the adiabatic limit, and the cavity mode is negligibly pop-
ulated during the process. This technique can be also an
alternative to the composition of many elementary gates
by a direct construction of specific gates, which could have
potential applications for the fast realisation of some al-
gorithms.
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